top of page

Written Curriculum Step 5: Subject Group Objectives

Updated: Aug 1, 2022

MYP mathematics has four objectives and they are directly aligned with the assessment criteria (objectives are addressed, criteria are assessed). This post will look at what the objectives are, what to think about when assigning them to each unit, and five examples of selecting objectives for a unit.

Each objective is made up of several strands, and these strands often progress in complexity from year 1 to year 3 (bold) to year 5 (underlined). They are as follows:

Objective A: Knowing and understanding

  • select appropriate mathematics when solving problems in both familiar and unfamiliar situations

  • apply the selected mathematics successfully when solving problems

  • solve problems correctly in a variety of contexts.

Objective B: Investigating Patterns

  • Select and apply mathematical problem-solving techniques to recognize patterns/discover complex patterns

  • describe patterns as relationships or general rules consistent with findings/describe patterns as relationships and/or general rules consistent with findings/ describe patterns as general rules consistent with findings

  • verify whether the pattern works for other examples/ verify and justify relationships and/or general rules/ prove, or verify and justify, general rules.

Objective C: Communicating

  • use appropriate mathematical language (notation, symbols and terminology) in both oral and written statements/explanations

  • use appropriate forms of mathematical representation to present information

  • move between different forms of mathematical representation

  • communicate coherent, complete, and concise mathematical lines of reasoning

  • organize information using a logical structure.

Objective D: Applying mathematics in real-life contexts

  • identify relevant elements of authentic real-life situations

  • select appropriate mathematical strategies when solving authentic real-life situations

  • apply the selected mathematical strategies successfully to reach a solution

  • explain/justify the degree of accuracy of a solution

  • describe/explain/justify whether a solution makes sense in the context of the authentic real-life situation

When planning which objective(s) to put with each unit, the things to consider are:

- What is the purpose of the unit?

- Does the content covered lend itself to a particular objective or strand?

- Do the concepts selected lend themselves to a particular objective/strand?

- Every strand, within each objective, needs to be assessed at least twice in the year.

- The objectives selected will inform the learning experiences, the ATLs focused on

and the unit summative(s).

- Units do not need to cover every strand of the objective

- Units may cover strands from multiple objectives

Looking at our work in progress units for MYP1 below, let’s consider which objectives may be reasonable to select, and why.

Unit 1 - flowcharts within the content and representation as a concept lends the unit to objective C: communicating. In addition to this, as it is the first unit of MYP1, and there is a wide range of content, it may be good to assess objective A: knowing and understanding.

Unit 2 - using fractions, decimals and percentages alongside entrepreneurship may have more engagement in an existing business or within the students' own business ideas. This would therefore work well with objective D: applying mathematics in real-life contexts.

Unit 3 - the related concept of generalization could be developed through writing general rules, a factor of objective B: investigating patterns. Students often need to use keywords for equal angles (corresponding, alternate etc) and therefore it may be wise to also work towards the first strand of objective C: communicating. Using these keywords correctly require knowledge of them, and therefore objective A: knowing and understanding might also be focused on.

Unit 4 - Logic as a concept may insinuate understanding the appropriate steps to take, and therefore objective A: knowing and understanding would be a reasonable objective. As this is their initial introduction to algebra, checking understanding is crucial before building on this in future units.

Unit 5 - the global exploration of sustainable design means that students will likely complete practical design tasks related to real products. Therefore, objective D: applying mathematics in real-life contexts would be selected. Ensuring that others can interpret designs may bring a focus on objective C: communicating as well.

These objectives will be referred to in the next post as we look at how they can be assessed using similar criteria.


bottom of page